创新型农业贷款评分工具ALES的研究及风险管理实践研究成果简介

时间:2023-08-01 09:41:13
创新型农业贷款评分工具ALES的研究及风险管理实践研究成果简介[此文共4442字]

创新型农业贷款评分工具ALES的研究及风险管理实践研究成果简介

青海银行

2017年1月

一、课题背景及意义

在全球范围内,农业将是实现千年发展目标的重要组成部分。根据20国集团农业发展报告,到2050年,世界人口增长将达到90亿,农业生产需要增长70%才能满足人口的生存需求。气候变化和城市化进程将会加大农业生产的压力,可耕地面积将会减少。75%的贫困人口生活在农村地区,他们当中超过80%的人直接或间接地依靠农业维持生计。因此,在低收入国家,农业行业对经济增长和就业至关重要,因为它提供了20%的GDP且创造了约60%的就业。然而,发展中国家的农业特点仍然是生产力低下、加快农业增长能力有限。提高农业生产率可以保障粮食安全、减少贫困、创造就业机会、实现经济增长。

中国是一个人口众多的国家,农业自古以来就是中国最基础,最重要的战略性产业。农业具有粮食安全功能、环境功能、经济功能和社会功能,是国民经济的基础,是中国的“母亲产业”。在“十二五”发展的大趋势下,“十三五”期间农业经济发展已经成为国家工作重心。国务院发布的中央2015年一号文件中,首次提出引导和鼓励社会资本投向农村建设,体现出新形势下党中央、国务院把解决“三农”问题作为党和国家工作重中之重的战略意图。同时,2015年《政府工作报告》中指出“普惠金融”,即通过加大政策引导扶持、加强金融体系建设、健全金融基础设施,以可负担的成本为有金融服务需求的社会各阶层和群体 ……此处隐藏3405个字……效、低成本的ALES评估工具使农贷产品种类更加丰富,用途更加广泛。三款核心产品可以满足农户生产流动资金需求、农业生产投资型需求和农户消费需求。

ALES农贷评估工具开发过程中使用专家评分法的原因是基于数据局限。综合数据库的建立完成了数据从无到有的改变。随着ALES工具的使用、综合数据库的完善、以及信贷交易数据的不断积累,当样本量达到一定程度,青海银行将从以下三个纬度进行研究以进一步完善ALES评估系统:

(一)评分技术升级

当数据库样本量达到一定程度,便可尝试建立统计评分模型,并通过原有专家评分模型和新建统计模型间的相互校验逐步提高ALES评估质量。当信贷交易数据样本量足够大时,ALES有望实现从混合评分法至统计评分法的彻底过渡。

(二)机构外数据源接入

ALES系统可以在自有综合数据库的基础上接入其他机构外数据源,建立更完善的统计模型,从而进一步提高ALES农贷评估工具的预测准确度和可靠性。可以考虑接入ALES农贷评估系统的机构外数据源种类包括气象数据、地理地质数据、农牧产品(期货及现货市场)交易数据、政府征信数据、公检法数据、第三方支付数据、电商平台数据,等等。随着更多数据源的接入以及评分模型的不断优化和细化,可对ALES系统进行再开发,由目前的贷前审批及授信建议工具拓展为涵盖客户画像、精准营销、贷前审批、授信建议、贷后监控的全流程贷款工具。同时,ALES工具也有望从目前的农贷评估工具拓展为包括更多贷款类型的综合性贷款评估工具。

(三)工具载体

随着综合数据库和评分模型的完善,ALES系统可以由目前的单机版升级为网络版,以便更多机构外数据源的接入,并进一步提供ALES系统使用效率。

《创新型农业贷款评分工具ALES的研究及风险管理实践研究成果简介[此文共4442字].doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式